
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, Illinois 60439ANL/MCS-TM-247Numerical Simulations of MagneticReversal in Layered Spring Magnets�byJ. Samuel Jiang,y Hans G. Kaper,z and Gary K. Leaf xMathematics and Computer Science DivisionTechnical Memorandum ANL/MCS-TM-247January 2001�This work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Advanced Scienti�c Computing, U.S. Department of Energy, under ContractW-31-109-Eng-38.yMaterials Science Division, Argonne National Laboratory, Argonne, IL 60439 (jiang@anl.gov)zMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439(kaper@mcs.anl.gov)xMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439(leaf@mcs.anl.gov)



ContentsAbstract 11 Introduction 12 Computational Model 32.1 Dynamics of the Magnetic Moment . . . . . . . . . . . . . . . . . . . . . . 42.2 Integration of the LLG Equation . . . . . . . . . . . . . . . . . . . . . . . . 52.3 Computing Equilibrium Con�gurations . . . . . . . . . . . . . . . . . . . . . 83 Numerical Results 83.1 Rotational Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.2 Two Types of Rotational Hysteresis . . . . . . . . . . . . . . . . . . . . . . 123.2.1 0 < Ha < Hc1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.2.2 Hc1 � Ha < Hc2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.2.3 Hc2 � Ha < Hc3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.2.4 Ha � Hc3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143.3 Comparison with Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 193.4 Energy Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.5 Determination of Hc3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 Conclusions 24Acknowledgments 24References 25ii



Numerical Simulations of MagneticReversal in Layered Spring MagnetsbyJ. Samuel Jiang, Hans G. Kaper, and Gary K. LeafAbstract. This report summarizes the results of numerical investigations of magnetic reversalin layered spring magnets. A one-dimensional model is used of a �lm consisting of several atomiclayers of soft material on top of several atomic layers of hard material. Each atomic layer is takento be uniformly magnetized, and spatial inhomogeneities within an atomic layer are neglected. Thestate of such a system is described by a chain of magnetic spin vectors. Each spin vector behaveslike a spinning top driven locally by the e�ective magnetic �eld and subject to damping (Landau{Lifshitz{Gilbert equation). A numerical integration scheme for the LLG equation is presented thatis unconditionally stable and preserves the magnitude of the magnetization vector at all times. Theresults of numerical investigations for a bilayer in a rotating in-plane magnetic �eld show hysteresiswith a basic period of 2� at moderate �elds and hysteresis with a basic period of � (or any multiplethereof) at strong �elds.1 IntroductionExchange-spring coupled magnets (spring magnets, for short) hold signi�cant promise forapplications in information recording and storage devices. Spring magnets consist of nano-dispersed hard and soft magnetic phases that are coupled at the interfaces. (In a hardmaterial, the magnetic moment tends to be aligned with the easy axis; in a soft material,it is more or less free to align itself with the local magnetic �eld.) The superior magneticproperties of a spring magnet stem from the fact that the soft phase enhances the mag-netization of the composite [1, 2, 3, 4, 5, 6]. Since the performance of a spring magnet isdetermined by the stability of the soft phase against magnetization reversal, it is importantto identify the factors a�ecting the reversal process.Thin �lms provide an interesting class of simple models for which one can performboth physical and computational experiments. A spring-magnet structure can be realizedby interleaving hard and soft magnetic layers, and because the layered structure resultsin variations of the magnetic properties predominantly along the normal direction, thestructure of such spring magnets is essentially one dimensional.In this report we investigate magnetic reversal in a hard/soft bilayer|a layer of softmaterial on top of a layer of hard material|with strong coupling at the interface. Thehard and soft layers both consist of several atomic layers; each atomic layer is treated as1



uniformly magnetized, and spatial inhomogeneities within an atomic layer are neglected.The state of the bilayer is thus described by a chain of spins in the normal direction, whereeach spin represents the magnetic moment of an atomic layer.The dynamics of a magnetic moment are entirely local. A magnetic moment is likea spinning top, which is driven by the e�ective magnetic �eld and subject to damping.The relevant equation was �rst formulated by Landau and Lifshitz [7] and later given inan equivalent form by Gilbert [8]. The local e�ective �eld is derived variationally from anenergy functional [9].A hard material is characterized by a large anisotropy energy, which enhances thetendency of the spins to line up with the easy axis. In the soft material, on the other hand,the spins are more or less free to align themselves with the magnetic �eld. If the directionof the applied �eld deviates from the easy axis of the hard material, and the hard and softlayers are tightly coupled at the interface as in a spring magnet, the chain of spins will twistthrough the soft material to approach the direction of the applied �eld. The direction ofthis twist (the chirality) depends on the angle between the direction of the applied �eldand the easy axis of the hard material. It can be positive (the in-plane angle of the spinwith the easy axis increases as one goes from the hard to the soft layers) or negative (thein-plane angle of the spin with the easy axis decreases as one goes from the hard to the softlayers). Transitions from one chirality to the other may occur at critical directions of theapplied �eld. A change of chirality leads to hysteresis.In this report we investigate magnetic reversal in a hard/soft bilayer induced by therotation of an in-plane magnetic �eld. The results of numerical simulations for a Sm-Co/Febilayer show di�erent behavior depending on the strength of the applied �eld.� As long as the �eld is weak, the magnetization is reversible, and no hysteresis occurs.� A su�ciently strong �eld pulls the magnetic spins in the soft layers in its wake butleaves the spins in (most of) the hard layers �xed along the easy axis. When the di-rection of the applied �eld deviates signi�cantly from the easy direction, a transitionoccurs in the soft layers that changes the chirality of the chain of spins. Rotationalhysteresis with a basic period of 360 degrees results. The degree of hysteresis varieswith the �eld strength, and there is the possibility of a discontinuity because of a struc-tural change in the chain of spins. This structural change shows some characteristicsof a phase transition.� A very strong �eld pulls the entire chain of magnetic spins, in the soft as well as thehard layers, in its wake. But since the spins in the hard layers are essentially con�nedto the easy axis, either in the positive or in the negative direction, the spins in thehard layers follow intermittently, 
ipping only when the direction of the applied �elddeviates su�ciently from the easy direction. The spins in the soft layers follow thedirection of the applied �eld more closely as one goes up through the soft layers, but2



still discontinously when the spins in the hard layers 
ip their orientation. Only thespin in the top layer rotates continuously. The chirality of the chain of spins doesnot change; however, since the chain of spins behaves more like a spring than a sti�rod, it still experiences rotational hysteresis. The period of this hysteresis can be anymultiple of 180 degrees.The numerical results explain the experimental observation of hysteresis in some torquemeasurements [10]. They also agree qualitatively with some magneto-optical measurementsof the magnetization angle [11]. However, they di�er at the quantitative level; in particular,the width of the hysteresis loops is found to be signi�cantly greater in the simulations thanin the experiments, except at weak �elds. The discrepancy is due to the mathematicalmodel: A one-dimensional model is a single-domain model, which does not allow for thenucleation and motion of nanodomains. Hence, the demagnetization energy is seriouslyoverestimated. In simulations of realistic spring magnets, it is therefore necessary to usemultidimensional models. A summary of the data presented in the present report is givenin [12].Following is an outline of the report. In Section 2 we describe the computational modeland the approximation procedure. In Section 3, we present the results of the numerical sim-ulations. In Section 4, we summarize our conclusions. We use the Gaussian C.G.S. systemof units.2 Computational ModelA layered spring magnet is a multilayer structure, which consists of Nh atomic layers of ahard magnetic material adjacent to Ns atomic layers of a soft magnetic material,Hard layers : i 2 Ih = f1; : : : ; Nhg;Soft layers : i 2 Is = fNh + 1; : : : ; Nh +Nsg:We put I = Ih [ Is and N = Nh +Ns. The atomic layers are homogeneous, and variationsoccur only in the direction normal to the layers. We assume for convenience that the atomiclayers are equally thick; their thickness d is of the order of angstroms (1 �A equals 1 � 10�8cm).We adopt a right-handed Cartesian (x; y; z) coordinate system, where the x and y axesare in the plane of an atomic layer, the x axis coincides with the easy axis of the hardmaterial, and the z axis is in the direction normal to the layers; ex, ey , and ez are the unitvectors in the direction of increasing x, y, and z, respectively. In a polar (�; �) coordinatesystem, � is the out-of-plane angle and � the in-plane angle measured counterclockwise fromthe positive x axis. 3



The state of the bilayer is completely described by the set of magnetic moments,M = fM i : i 2 Ig: (2.1)EachM i is a vector-valued function of time t, with components Mi;x, Mi;y, and Mi;z . Themagnitude Mi ofM i is the magnetization (emu/cm3), the unit vectormi =M i=Mi is themagnetic spin in the ith layer. The magnetization is constant at all times and equal to thelocal saturation magnetization,M i(t) =Mimi(t); with Mi = ( Mh if i 2 Ih;Ms if i 2 Is: (2.2)Here, Mh and Ms are the values of the saturation magnetization for the hard and softmaterial, respectively. Each magnetic spin can be speci�ed in terms of its Cartesian orpolar components,mi = (mi;x; mi;y; mi;z)t = (cos�i cos �i; cos�i sin �i; sin�i)t: (2.3)Thus, �i is the in-plane angle ofmi with the easy axis of the hard material (measured fromthe positive x direction), �i the out-of-plane angle of mi.2.1 Dynamics of the Magnetic MomentIn the one-dimensional model under consideration, the dynamics of the magnetic momentare entirely local and are those of a spinning top subject to damping. The force drivingM i is the local magnetic �eld Hi. The equation of motion is the Landau{Lifshitz{Gilbert(LLG) equation, @M i@t = �
(M i �H i) + gMi �M i � @M i@t � ; i 2 I: (2.4)Here, 
 is the gyromagnetic constant (sec�1oersted�1) and g a (dimensionless) dampingcoe�cient. The magnitude of H i is speci�ed in oersted (1 oersted = 1 emu/cm3). Notethat the LLG equation yields a magnetic moment whose magnitude is constant in time. Anequivalent form of the LLG equation is@M i@t = �c �(M i �Hi) + gMiM i � (M i �Hi)� ; i 2 I; (2.5)where c = 
=(1+ g2).Suppose that the system is subject to an externally applied magnetic �eld Ha, whichis uniform and constant in time. Then the local magnetic �eld Hi is computed at any timefrom the expressionHi =Ha + 1Mi [Ji;i+1(mi+1 �mi)� Ji;i�1(mi �mi�1)]� 2KiMiex � (mi � ex)� 4�Mi(mi � ez)ez ; i 2 I; (2.6)4



where m0 =m1; mN+1 =mN : (2.7)The last identities are the discrete analogs of the Neumann boundary condition at the freesurfaces (no surface anisotropy);m0 and mN+1 may be viewed as the magnetic spins in avirtual layer of hard material at the bottom (index i = 0) and a virtual layer of soft materialat the top (index i = N + 1).The coupling coe�cient J (erg/cm3) has the same value between layers of the samematerial; similarly, the anisotropy coe�cient K (erg/cm3) is constant within the samematerial,Ji;i+1 = 8><>: Jh; i = 1; : : : ; Nh � 1;Jhs; i = Nh;Js; i = Nh + 1; : : : ; N; Ki = ( Kh; i = 1; : : : ; Nh;Ks; i = Nh + 1; : : : ; N: (2.8)The actual values of these material parameters depend on the temperature; Ks � Kh inall practical cases.The expression (2.6) is an approximation for the expressionH i =Ha � �F�M i ; (2.9)where F is the free energy density and �=�M i its Fr�echet derivative with respect to M i.The free energy is the sum of the exchange energy, the anisotropy energy, and the demag-netization energy,F [M ] = Z
 "12A(z) ����@m@z ����2 +K(z) jm� exj2 + 12(4�)(M � ez)2# : (2.10)Here, 
 is the z interval occupied by the entire multilayered structure and A is the exchangecoupling coe�cient (erg/cm), which is related to J (J = Ad�2). The demagnetization tensorfor a layer has only one element, Dzz ; 4� is its value for an in�nitely thin 
at ellipsoid [13].Note that 1 emu equals 1 erg/oersted and 1 oersted equals 1 emu/cm3, so F is expressedin units of erg/cm3.2.2 Integration of the LLG EquationThe LLG equation maintains a constant magnetization, so the only quantity that changes inthe course of time is the direction of the magnetic moment. We therefore begin by rewritingthe LLG equation in terms of m. As the equation is entirely local to each layer, we dropthe index i temporarily. We use the prime 0 to denote di�erentiation with respect to time.5



Let H be the strength of the magnetic �eld (oersted), and let h = H=H be the unitvector in the direction of H, H(t) = H(t)h(t): (2.11)Then the LLG equation ism0 = �cH [(m� h) + gm� (m� h)] : (2.12)We decompose the equation by means of the projection operators P and Q,Pu = (u � h)h; Qu = u� Pu = h � (u� h); u 2 R3: (2.13)Equation (2.12) is equivalent to the two equationsPm0 = �cHP [(m� h) + gm� (m� h)] ; (2.14)Qm0 = �cHQ [(m� h) + gm� (m� h)] : (2.15)Notice the identitiesP (m� h) = 0; P [m� (m� h)] = (m �Qm)h = �[1� (Pm � Pm)2]h; (2.16)Q(m� h) = �JQm; Q[m� (m� h)] = (m � h)Qm; (2.17)where J is the square root of the negative identity in R2,I =  1 00 1 ! ; J =  0 �11 0 ! ; J2 = �I: (2.18)Hence, we can recast Eqs. (2.14) and (2.15) in the formPm0 = cgH [1� (Pm � Pm)2]h; (2.19)Qm0 = cH [J � g(m � h)I ]Qm: (2.20)Suppose that the direction of H does not change on an interval (t; t+�t),h(s) = h(t); s 2 (t; t+�t): (2.21)Then Pm0 = (Pm)0 and Qm0 = (Qm)0 on (t; t+ �t), so Eqs. (2.19) and (2.20) reduce toa coupled system of di�erential equations for the scalar u = (Pm � h) in R and the vectorv = Qm in R2, u0 = cgH(1� u2) on (t; t+�t): (2.22)v0 = cH(J � guI)v on (t; t+�t): (2.23)From these equations we conclude that the critical states are u = 1, v = 0 (m = h,magnetic moment parallel to the magnetic �eld) and u = �1, v = 0 (m = �h, magnetic6



moment antiparallel to the magnetic �eld). The former is linearly stable, the latter unstableunder in�nitesimal perturbations.We now turn to the integration of Eqs. (2.22) and (2.23). The former is independentof v and can be integrated immediately. If not only the direction but also the magnitudeof H is constant on (t; t+ �t),H(s) =H(t); s 2 (t; t+�t); (2.24)we �ndu(s) = u(t) cosh(cgH(t)(s� t)) + sinh(cgH(t)(s� t))cosh(cgH(t)(s� t)) + u(t) sinh(cgH(t)(s� t)) ; s 2 (t; t+ �t): (2.25)Next, we turn to Eq. (2.23). We replace the constant cgH by u0=(1� u2) (from Eq. (2.22))and use the identity �uu0=(1�u2) = (ln(1�u2)1=2)0 to convert the equation into a di�erentialequation for the vector w = (1� u2)�1=2v,w0 = cHJw on (t; t+ �t): (2.26)This equation can be integrated,w(s) = ecH(t)(s�t)Jw(t)= [cos(cH(t)(s� t))I + sin(cH(t)(s� t))J ]w(t); s 2 (t; t+�t): (2.27)From the expression (2.25) we obtain(1� u(s)2)1=2 = (1� u(t)2)1=2cosh(cgH(t)(s� t)) + u(t) sinh(cgH(t)(s� t)) ; (2.28)so v(s) = cos(cH(t)(s� t))I + sin(cH(t)(s� t))Jcosh(cgH(t)(s� t)) + u(t) sinh(cgH(t)(s� t))v(t); s 2 (t; t+�t): (2.29)These results motivate the choice of the integration scheme for Eq. (2.12),mn+1 = (mn � hn) cosh(cgHn�t) + sinh(cgHn�t)cosh(cgHn�t) + (mn � hn) sinh(cgHn�t)hn+ cos(cHn�t)I + sin(cHn�t)Jcosh(cgHn�t) + (mn � hn) sinh(cgHn�t)hn � (mn � hn); (2.30)where mn+1 =m(tn+1), mn =m(tn), hn = h(tn), Hn = H(tn), and �t = tn+1 � tn.The algorithm (2.30) is unconditionally stable for all values of �t. Of course, thequality of the approximation su�ers as �t increases. However, the algorithm explicitlydisplays the relationship between the size of �t and the local error in the time integration.7



The rate of precession of m around the polar axis is governed by H , the magnitude of thelocal e�ective �eld: in one time step, m precesses through an angle H�t. Therefore, byproperly choosing �t, we can resolve the fastest precessional motion in a given number oftime steps per period. Since H varies over the course of a simulation, we have a naturaland direct means to adjust the size of �t to the current dynamical state, while maintainingthe resolution of the precessional motion.Other algorithms for the numerical integration of the LLG equation have been proposedrecently by Nigam [14] and E and Wang [15].2.3 Computing Equilibrium Con�gurationsThe analysis in the preceding section suggests the following algorithm for �nding the equi-librium spin con�guration in a bilayer. Starting from a given equilibrium stateM = fM i :i 2 Ig at time t0, one uses Eq. (2.6) to compute the magnetic �eld H i in each layer at t0.Having found Hi(t0) for all i 2 I , one advances in time to t1 = t0 +�t and uses Eqs. (2.2)and (2.30) to compute M at t1. If �t is su�ciently small, M(t1) is a close approximationof the state of the system at time t1. One continues this process, �nding approximations ofthe state of the system at successive times tn = t0 + n�t, n = 1; 2; : : : , until equilibrium isreached.3 Numerical ResultsThe algorithm of the preceding section has been used to study hysteresis phenomena inhard/soft bilayers that are driven by an applied �eld Ha that is uniform, constant in time,and parallel to the planes of the atomic layers. The expression for the e�ective magnetic�eld, Eq. (2.6), decomposes into an in-plane component,Hi � ez =Ha � ez + 1Mi [Ji;i+1(mi+1 �mi)� Ji;i�1(mi �mi�1)]� ez� 2KiMi (mi � ey)ex; i 2 I; (3.1)and an out-of-plane component,Hi � ez = 1Mi [Ji;i+1(mi+1 �mi)� Ji;i�1(mi �mi�1)] � ez� 2KiMimi � ez � 4�Mimi � ez ; i 2 I: (3.2)When the system is in an equilibrium state, the e�ective magnetic �eld is parallel (orantiparallel) to the magnetic spin; see Section 2.2. Hence, each Hi is a multiple ofmi, and8



Eq. (3.2) reduces to a homogeneous system of linear algebraic equations for the set of scalarsfmi � ez : i 2 Ig. In general, this system admits only the trivial solution, so the magneticmoments lie in the plane of the atomic layers. In the notation of Eq. (2.3), �i = 0 for alli 2 I at equilibrium, and the only relevant variables are the in-plane angles f�i : i 2 Ig. (Ofcourse, the magnetic spin may have an out-of-plane component during the transient phaseof the computation.)In the numerical simulations we focus on the in-plane angle of the magnetic spin atequilibrium and investigate its behavior as a function of the strength Ha and the direction�a of the applied �eld, Ha = Haha; ha = (cos �a; sin �a; 0)t: (3.3)The following computations refer to a bilayer con�guration consisting of Nh = 115 atomiclayers of Sm-Co (a hard material) and Ns = 100 atomic layers of Fe (a soft material).A di�erent con�guration is used in Section 3.3, where we make a comparison with somemagneto-optical measurements. Table 1 gives the values of the material parameters A,K, and M , as well as the values of the coupling coe�cient J (J = Ad�2, d = 2 �A). Thegyromagnetic constant is 
 = 1:1052 � 108=(2�) sec�1oersted�1. In all cases, the dampingcoe�cient g = 0:5. Table 1: Numerical values of the parameters.A (erg/cm) J (erg/cm3) K (erg/cm3) M (emu/cm3)Fe 2:8 � 10�6 7:0 � 109 1:0 � 103 1,700Interface 1:8 � 10�6 4:5 � 109 { {Sm-Co 1:2 � 10�6 3:0 � 109 5:0 � 107 5503.1 Rotational HysteresisThe case Ha = 4800 oersteds is typical, at least for moderate values of Ha (see Section 3.2).In a �rst set of simulations, we computed the equilibrium state as a function of theangle �a, �rst increasing �a from 0 to 2�, then decreasing �a from 2� to 0. At each value of�a, we started the computation from the equilibrium state for the preceding value of �a.The simulations show that the equilibrium spin con�gurations for increasing �a (0 <�a < 2�) and decreasing �a (2� > �a > 0) are mirror images of each other. Figure 1 showstwo sets of magnetic spin con�gurations at equilibrium for various values of �a, one set (left)as �a increases from 0 to 2�, the other set (right) as �a decreases from 2� to 0. The heavydots represent the endpoints of the magnetic spin (a unit vector) in each layer for variousangles �a; the values of �a, in degrees, are indicated near the top layer. (The dots mergeinto a solid line where the magnetic spins in adjacent layers are close.)9
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contracts gradually as one descends through the soft layers, to disappear entirely in thehard layers somewhat below the interface; see Fig. 4.3.2 Two Types of Rotational HysteresisWe now vary the strength of the applied �eld, Ha. We recall (Fig. 4) that, as �a increasesfrom 0, the chirality changes discontinuously from positive to negative as the direction ofthe applied �eld deviates su�ciently from the easy axis. We denote the critical value of theangle �a by �c (�c = 301:5 : : : at Ha = 4800 oersteds.) Figure 5 shows the variation of �cwith Ha.
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0 90 180 270 360
−90

−45

0

45

90

In−plane angle of applied field, θ
a
 (degrees)

In
−

pl
an

e 
an

gl
e 

of
 m

ag
ne

tic
 s

pi
n,

 θ
N

 (
de

gr
ee

s)

(a)

(b)

(c)

(d)

Figure 6: No hysteresis below Hc1. In-plane angle �N (top layer) vs. �a, (a) Ha = 200,(b) Ha = 400, (c) Ha = 600, (d) Ha = 800 oersteds.3.2.2 Hc1 � Ha < Hc2The �rst critical value of Ha, Hc1, is reached when the slope of the graph of �N (and of �ifor all i) vs. �a in Fig. 6 becomes vertical. The graph of �c vs. Ha (Fig. 5) is continuous andhas a zero slope at Ha = Hc1. From here on, the magnetization process is irreversible. Thespins show rotational hysteresis of the type discussed in the preceding section, with a basicperiod of 2�. The graph of �i vs. �a for increasing values of �a separates from the graph fordecreasing values of �a. The separation is symmetric around �a = �.The width of the hysteresis loop increases monotonically from 0 at Ha = Hc1 to somevalue less than 2� (� 286 degrees) at the next critical value, Ha = Hc2. Figure 7 shows thein-plane angle in the top layer as a function of �a, for various values of Ha. (The verticalscale di�ers from Fig. 6.)3.2.3 Hc2 � Ha < Hc3At Ha = Hc2 (Hc2 � 6798 oersteds), the angle �c shows a pronounced discontinuity (�cdrops from 323.1 degrees at Ha = 6798 oersteds to 259.9 degrees at Ha = 6799 oersteds)and the hysteresis loop suddenly narrows. Beyond Hc2, it continues to narrow, but itdoes not collapse entirely. At the next critical value, Ha = Hc3, �c is still greater than �(�c � 197:0 degrees); see Fig. 8.The cause of the discontinuity at Ha = Hc2 can be seen in Fig. 9, where we have13
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Figure 7: Rotational hysteresis in (Hc1; Hc2). In-plane angle �N (top layer) vs. �a, (a) Ha =1000, (b) Ha = 3000, (c) Ha = 5000, (d) Ha = 6797 oersteds.plotted �i against i; cf. Fig. 3. (The bottom 80 layers of hard material, where � does notdeviate noticeably from 0, are not included in this �gure.) At Hc2, the chain of spins hasbeen stretched to its widest extent; it can no longer support the (almost 280-degree) spanin the top layer, sti�ens suddenly, and becomes more like a rigid rod. The rod-like behavioris apparent from the increasing range where the chain is almost vertical. The sti�ening ofthe chain of magnetic spins continues as Ha increases to Hc3.The structural change in the chain of spins has some of the characteristics of a phasetransition. For example, we observe a signi�cant increase in the equilibration time (by twoorders of magnitude) as �a approaches �c; see Fig. 10. Also, the increasing size of the rigiddomain near Hc2 is reminiscent of a diverging correlation length.3.2.4 Ha � Hc3At Ha = Hc3 (Hc3 between 10,200 and 10,300 oersteds), the magnetic spin con�gurationbegins to show an entirely new behavior. So far, the spins have always maintained a �xedorientation in the hard layers: along the easy axis (apart from small deviations near theinterface) and in the positive x direction. As the applied �eld rotated, the orientation ofthe magnetic spins changed only in the soft layers (and in a few hard layers just below theinterface). The result was a change of the chirality of the chain of magnetic spins, whichled to rotational hysteresis with a basic period 2�. At Ha = Hc3, the �eld energy becomessu�ciently large for the �rst time to change the orientation of the spin in the hard layers tothe negative x direction and thus move the chain of magnetic spins over its entire length.14
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Figure 8: Rotational hysteresis in (Hc2; Hc3). In-plane angle �N (top layer) vs. �a, (a) Ha =6799, (b) Ha = 8000, (c) Ha = 9200, (d) Ha = 10; 200 oersteds.
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3.3 Comparison with ExperimentQuantities such as the magnetic moment are fundamental to describe the state of the system,but they are not directly measurable in an experiment. Measurable quantities are themagnetization angle (or apparent angle), �, and the torque density, T . The magnetizationangle is associated with the vector sum of the in-plane components of the magnetic moments,� = tan�1 Pi2I Mi;yPi2I Mi;x = tan�1 Pi2I Mi sin �iPi2I Mi cos �i : (3.4)The torque density T (erg/cm2) is de�ned by the expressionT = HadXi2I Mi sin(�a � �i); (3.5)it is the normal component of the vector T ,T = dXi2I(M i �Ha) = HadXi2I Mi(mi � ha): (3.6)In Fig. 14, we compare results for the magnetization angle with experimental data. Thedata were obtained by magneto-optical means for a bilayer consisting of Nh = 100 atomiclayers of Sm-Co and Ns = 250 atomic layers of Fe; the simulation curves also refer to thiscon�guration [11]. The measurements were done at relatively low �elds (Ha = 360; 600,and 840 oersteds) and for a limited range of directions (�a = 0 : 10 : 230 degrees).
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Figure 14: Magnetization angle; (a) Ha = 360 (o), (b) Ha = 600 (+), and (c) Ha = 840(�) oersteds. 19



There is certainly qualitative agreement, but the simulations generally yield widerhysteresis loops than the experiments. In fact, the discrepancy becomes greater as the �eldstrength increases. This behavior can be explained by the fact that the model used in thesimulations is a single-domain model, which does not allow for the important phenomenon ofnucleation and motion of nanodomains. As a result, the demagnetization energy is seriouslyoverestimated. In realistic simulations, one must use multidimensional models and allowfor lateral inhomogeneities [11].For completeness, we also give the computational results for the magnetization angleand torque density for the standard con�guration considered in the preceding sections; seeFigs. 15 and 16.
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netic moments. Their hysteresis loops expand between Hc1 and Hc2, show a discontinuityat Ha = Hc2, contract between Hc2 and Hc3, and show period doubling beyond Hc3.Notice that the graph of the apparent angle appears to develop cusps near the discon-tinuities when Ha is below Hc2 (Fig. 15, left, curve (c)). In fact, at Ha = 4800 oersteds(not shown), the value of � exceeds the value of �a at the last data point (� = 306:9 at�a = 301:5 degrees). The origin of this anomaly is to be found in the de�nition of the appar-ent angle. Once the spins in the soft layers rotate beyond 180 degrees, their contribution tothe vector sum in Eq. (3.4) changes sign. As a result, the magnetization angle may overtake�a. Experimental torque measurements at comparable values of Ha show similarly shapedgraphs, with extrema at approximately the same values of �a, but signi�cantly narrowerhysteresis loops [10].3.4 Energy DensityIt is interesting to see how the energy density of the equilibrium spin con�guration dependson �a and how this dependence varies with Ha.Figure 17 summarizes the results of the simulations, again for the standard con�gura-tion considered in the preceding sections. (The vertical scales vary from one sub�gure tothe next.) The graph is smooth as Ha increases from 0. It develops a cusp at �a = � as Haapproaches Hc1 (Fig. 17, top left). The cusp develops into a discontinuity, which shifts toincreasing values of �a and becomes more pronounced as Ha increases beyond Hc1 to Hc2(Fig. 17, top right). The discontinuity shifts back and diminishes as Ha increases beyondHc2, until it disappears entirely when Ha reaches the value Hc3 (Fig. 17, bottom left). AtHa = Hc3, a new equilibrium state with a signi�cantly lower energy density, namely thestate where the spin in both the hard and the soft layers is 
ipped by 180 degrees, becomesaccessible, and the energy density curve becomes smooth on the two halves of the interval,with a peak exactly at �a = � (Fig. 17, bottom right).A contour plot of the energy surface is given in Fig. 18. One recognizes the outline ofthe curve of critical values �c of Fig. 5.3.5 Determination of Hc3The exact determination of Hc3 is delicate. If Ha is already above Hc3, but the increment in�a is taken too large, the con�guration of the magnetic spins may show the same qualitativebehavior as when Ha is below Hc3. The spin in the hard layers stays �xed in the positive xdirection, there is a critical value �c of �a where the chirality of the chain of spins changes21
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Figure 17: Total energy density at equilibrium. Top left: (a) Ha = 200, (b) Ha = 400,(c) Ha = 600, (d) Ha = 800 oersteds. Top right: (a) Ha = 1000, (b) Ha = 3000, (c) Ha =5000, (d) Ha = 6797 oersteds. Bottom left: (a) Ha = 6799, (b) Ha = 8000, (c) Ha = 9200,(d) Ha = 10; 200 oersteds. Bottom right: (a) Ha = 10; 200, (b) Ha = 10; 400 oersteds.from positive to negative, and the system continues to show hysteretic behavior. Thequalitative change in the con�guration of the magnetic spins at Ha = Hc3 described aboveand illustrated in Fig. 11 becomes apparent only if the increment in �a is su�ciently small,and even more so as Ha gets closer to Hc3. Figure 19 shows some hysteresis loops for �N ,�, and T , which were obtained for three values Ha, each greater than Hc3, with 5-, 10-, and20-degree increments of �a, respectively. (The increasing increment explains the increasingslope of the hysteresis loops.) The total equilibrium energy density of these states (notshown) follows the pattern of the curve (a) in Fig. 17, bottom right.In the neighborhood of Hc3, the rotational hysteresis phenomenon is apparently ratedependent: it is possible to reach di�erent states by choosing di�erent increments of �a.Table 2 illustrates this point. Here, Ha = 10; 400 oersteds, which is just above the critical22
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Figure 18: Contour plot of the total equilibrium energy density as a function of Ha (verticalaxis) and �a (horizontal axis).
0 90 180 270 360

−360

−270

−180

−90

0

90

180

270

360

In−plane angle of applied field, θ
a
 (degrees)

In
−

pl
an

e 
an

gl
e 

of
 m

ag
ne

tic
 s

pi
n,

 θ
N

 (
de

gr
ee

s)

(a)

(b)

(c)

0 90 180 270 360
−360

−270

−180

−90

0

90

180

270

360

In−plane angle of applied field, θ
a
 (degrees)

A
pp

ar
en

t a
ng

le
, α

 (
de

gr
ee

s)

(a) 

(b) 

(c) 

0 90 180 270 360
−30

−20

−10

0

10

20

30

In−plane angle of applied field, θ
a
 (degrees)

T
or

qu
e 

de
ns

ity
, T

 (
er

g/
cm

 2 )

(a) (b) (c) 

Figure 19: \Rotational hysteresis" above Hc3; (a) Ha = 10; 300, (b) Ha = 11; 000, (c) Ha =11; 900 oersteds. Left: in-plane angle �N (top layer); center: magnetization angle �; right:torque density T .value Hc3. We determined with a 0.1 degree increment that the spin in the hard layerschanges direction when �a is between 195.5 and 195.6 degrees; the energy drops from 60.048to 2.159 erg/cm2. The same state is reached when the increment is 1 degree and �a isincreased from 195 to 196 degrees. But when the increment is 5 degrees and �a is increasedfrom 195 to 200 degrees, we continue to see rotational hysteresis, and the energy drops onlya fraction to 49.397 erg/cm2.
23



Table 2: Total equilibrium energy density E (erg/cm2); Ha = 10; 400 oersteds; increments��a = 0:5; 1, and 5 degrees.�a 190.0 194.0 194.5 195.0 195.5 196.0 196.5 197.0 197.5 198.0 200.0E 58.707 59.701 59.819 59.935 60.048 2.194 2.238 2.284 2.312 2.381 2.590E 58.708 59.701 { 59.935 { 2.194 { 2.285 2.381 2.590E 58.711 { { 59.935 { { { { { { 49.3974 ConclusionsIn this report we have addressed the important issue of magnetization reversal in layeredspring magnets. We have used a one-dimensional model of a �lm consisting of atomic layersof a soft material on top of atomic layers of a hard material, with strong coupling at theinterface, assuming no variation in the lateral directions. The state of such a system isdescribed by a chain of magnetic spin vectors. Each spin vector behaves like a spinning topdriven by the local magnetic �eld and subject to damping. The dynamics are describedby a system of LLG equations, Eq. (2.5), coupled with a variational equation for the mag-netic �eld, Eq. (2.6). The numerical algorithm for the integration of the LLG equations,Eq. (2.30), preserves the magnitude of the magnetization vector at all times.The results of numerical simulations show that a layered spring magnet exhibits rota-tional hysteresis with a basic period of 360 degrees at moderately strong �elds and rotationalhysteresis with a basic period of 180 degrees at strong �elds. The former type of hysteresisis induced by a partial-length transition of the chain of magnetic spins; the transition occursonly in the soft material and causes a change of chirality. The hysteresis in strong �elds isinduced by a full-length transition of the chain of spins in both the hard and the soft layers;it is much weaker than the rotational hysteresis at moderately weak �elds and can coverany period that is a multiple of the base period.The numerical results for the torque and magnetization angle agree qualitatively withthe experimental data but di�er at the quantitative level. In particular, the one-dimensionalmodel seriously overestimates the demagnetization energy, since it does not allow for thenucleation and motion of nanodomains. In realistic simulations, lateral inhomogeneitiesmust be taken into account.AcknowledgmentsMost of the numerical simulations were carried out by Jaime Hernandez Jr. (University ofTexas at El Paso), who was a participant in the Energy Research Undergraduate LaboratoryFellowship program at Argonne National Laboratory (summer 2000).24
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